In order to generate high-quality optical vortices, this paper presents theoretical analysis, improved design and experimental demonstration of a novel approach for optical vortex generation based on Sagnac interferometer. The additional phase difference π is introduced, based on analyzing the influence of the interference loop on the shear amount, a optical vortex generation setup on the basis of a Sagnac interferometer is built, then the related considerations are given and optical vortices of topological charge +1 and -1 are generated respectively. The intensity distribution and interference patterns at various propagation distance are experimentally recorded and analyzed with topological charge keeping +1 and -1. The improved setup can generate optical vortices with higher quality.
BOIVIN A, DOW J, WOLF E. Energy flow in the neiborhood of the focus of a coherent beam[J]. Journal of the Optical Society of America, 1976, 57:1171-1175.
[2]
BRYNGDAHL O. Radial and circular fringe interferograms[J]. Journal of the Optical Society of America, 1973, 63(9):1098-1104.
[3]
VAUGHAN J M, WILLETTS D V. Interference properties of a light-beam having a helical wave surface[J]. Optical Communications, 1979, 30(3):263-267.
[4]
YU V B, VASNETSOV M V, SOSKIN M S. Laser beams with screw dislocations in their wavefronts[J]. Nature Genetics, 1990, 47(1):73-77.
[5]
REICHERTER M, HAIST T, WAGEMANN E U, et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display[J]. Optics Letters, 1999, 24(9):608.
[6]
NAGALI E, SCIARRINO F, MARTINI F D, et al. Quantum information transfer from spin to orbital angular momentum of photons[J]. Physrevlett, 2009, 103(1):013601.
[7]
OSTROVSKY A S, RICKENSTORFFPARRAO C, ARRIZÓN V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4):534-536.
[8]
COURTIAL J, DHOLAKIA K, ALLENL, et al. Gaussian beams with very high orbital angular momentum[J]. Optics Communications, 1997, 144(4-6):210-3.
[9]
BAZHENOV V Y, VASNETSOV M V, SOSKINM S, et al. Self-oscillations of a liquid near a free surface during continuous local heating[J]. Jetp Letters, 1989, 49(6):376-379.
[10]
QI Xiao-qing, GAO Chun-qing, LIU Yi-dong. Generation of helical beams with pre-determined energy distribution based on phase modulation gratings[J]. Acta Physica Sinica, 2010, 59(1):264-270. 齐晓庆, 高春清, 刘义东. 利用相位型衍射光栅生成能量按比例分布的多个螺旋光束的研究[J]. 物理学报, 2010, 59(1):264-270.
[11]
FICKLER R, LAPKIEWICZ R, PLICK W N, et al. Quantum entanglement of high angular momenta[C]. APS Meeting, 2014:640-3.
[12]
LIU Ya-chao, LING Xiao-hui, YI Xu-nong, et al. Photonic spin Hall effect in dielectric metasurfaces with rotational symmetry breaking[J]. Optics Letters, 2014, 40(5):756-9.
[13]
HE Yong-li, LIU Zhen-xing, LIU Ya-chao, et al. Higher-order laser mode converters with dielectric metasurfaces[J]. Optics Letters, 2015, 40(23):5506.
[14]
CHAI Zhong-yang, WANG qi-chang, ZENG Zhen, et al. Research on the generation of optical vortex array using a wedge array[J]. Acta Photonica Sinica, 2015, 44(4):0426005. 柴忠洋, 王祺昌, 曾臻, 等. 基于光楔阵列产生光学涡旋阵列的研究[J]. 光子学报, 2015, 44(4):0426005.
[15]
HUANG Su-juan, ZHANG Jie, SHAO Wei, et al. Experimental study on optical vortex array with high quality[J]. Acta Photonica Sinica, 2017, 46(8):0826002. 黄素娟, 张杰, 邵蔚, 等. 高质量光学涡旋阵列的实验研究[J]. 光子学报, 2017, 46(8):0826002.
[16]
VAITY P, AADHI A, SINGH R P. Formation of optical vortices through superposition of two Gaussian beams[J]. Applied Optics, 2013,52(27):6652-6656.
[17]
NAIK D N, CHAKRAVARTHY T P, VISWANATHAN N K. Generation of optical vortex dipole from superposition of two transversely scaled Gaussian beams[J]. Applied Optics, 2016, 55(12):B91.
[18]
NAIK D N, VISWANATHAN N K. Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer[J]. Journal of Optics, 2016,18(9):095601.
[19]
NAIK D N, SAAD N A, RAO D N, et al. Ultrashort vortex from a Gaussian pulse-An achromatic-interferometric approach[J]. Scientific Reports, 2017,7(1):2395.
[20]
ZETIE K P, ADAMS S F, TOCKNELL R M. How does a Mach-Zehnder interferometer work?[J]. Physics Education, 2000, 35(1):46-48.