Using precisely atomic layer etching technology, surface etching process of Te-doped GaSb surface by nitrogen plasma in the plasma enhanced atomic layer deposition system, which can improve emission intensity. The emission intensity increased by a factor of 4 at room temperature.With low temperature photoluminescence measurement, the peak associated with TeSb donor defects due to Te doping was found, with a peak position of 0.743 eV. In addition, the changing of band edge emission with temperature from 0.796 eV to 0.723 eV was also observed. By comparing the room temperature spectra and low temperature spectra,when the nitrogen plasma etching power was 100 W, the best etching cycle of Te-GaSb was 200 cycles. Moreover, the nitrogen passivation does not changed the emission mechanism of Te-GaSb, but improves the radiative recombination efficiency of the sample.
JEPPSSON M, DICK K A, WAGNER J B, et al. GaAs/GaSb nanowire heterostructures grown by MOVPE[J]. Journal of Crystal Growth, 2008, 310(18):4115-4121.
[2]
YANG Zai-xing, HAN Ning, FANG Ming, et al. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires[J]. Nature Communications, 2014, 5:5249.
[3]
LIAO Yong-ping, ZHANG Yu, XING Jun-liang, et al.GaSb-based quantum wells 2μm high power laser diode[J]. Chinese Journal of Lasers, 2015(B09):35-38. 廖永平, 张宇, 邢军亮, 等. 锑化镓基量子阱2μm大功率激光器[J]. 中国激光, 2015(B09):35-38.
[4]
JI Hai-ming, LIANG Bao-lai, SIMMONDS P J, et al. Hybrid type-I InAs/GaAs and type-Ⅱ GaSb/GaAs quantum dot structure with enhanced photoluminescence[J]. Applied Physics Letters, 2015, 106(10):103104.
[5]
WANG Yue, LIU Guo-jun, XING Jun-liang, et al. Study of the ohmic contact of gasb-based semiconductor laser[J]. Chinese Journal of Lasers, 2012, 39(1):54-57. 王跃, 刘国军, 李俊承, 等.GaSb基半导体激光器功率效率研究[J]. 中国激光, 2012, 39(1):54-57.
[6]
KLIPSTEIN P C, LIVNEH Y, GLOZMAN A, et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors[J]. Journal of Electronic Materials, 2014, 43(8):2984-2990.
[7]
DEL ALAMO J A. Nanometre-scale electronics with Ⅲ-V compound semiconductors[J]. Nature, 2011, 479(7373):317-323.
[8]
HOFFMANN J, LEHNERT T, HOFFMANN D, et al. Advantages and disadvantages of sulfur passivation of InAs/GaSb superlattice waveguide photodiodes[J]. Semiconductor Science and Technology, 2009, 24(6):065008
[9]
FANG Dan, FANG Xuan, LI Yong-feng, et al. Photoluminescence properties of the GaSb nanostructures irradiated by femtosecond laser[J]. Nanoscience and Nanotechnology Letters, 2015, 7(2):117-120.
[10]
ZHAO Lian-feng, TAN Zhen, BAI Rong-xu, et al. Effects of sulfur passivation on GaSb metal-oxide-semiconductor capacitors with neutralized and unneutralized (NH4)2S solutions of varied concentrations[J]. Applied Physics Express, 2013, 6(5):056502.
[11]
SALIHOGLU O. Atomic layer deposited passivation layers for superlattice photodetectors[J]. Journal of Vacuum Science & Technology B, 2014, 32(5):051201
[12]
CHEN Fang, LIU Guo-jun, WEI Zhi-peng, et al. Study on the properties of gallium antimonide surface passivatied with S2Cl2 solution[C]. Optoelectronics and Microelectronics (ICOM), 2012 International Conference on IEEE, 2012:21-24.
[13]
XU Run-shen, TAKOUDIS C G. Chemical passivation of GaSb-based surfaces by atomic layer deposited ZnS using diethylzinc and hydrogen sulfide[J]. Journal of Vacuum Science & Technology A, 2012, 30(1):01A145
[14]
RUPPALT L B, CLEVELAND E R, CHAMPLAIN J G, et al. Electronic properties of atomic-layer-deposited high-k dielectrics on GaSb (001) with hydrogen plasma pretreatment[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2015, 33(4):04E102.
[15]
ASCAZUBI R, SHNEIDER C, WILKE I, et al. Enhanced terahertz emission from impurity compensated GaSb[J]. Physical Review B, 2005, 72(4):045328.
[16]
WANG Bo, WEI Zhi-peng, LI Mei, et al. Tailoring the photoluminescence characteristics of p-type GaSb:the role of surface chemical passivation[J]. Chemical Physics Letters, 2013, 556:182-187.
[17]
LEE M, NICHOLAS D J, SINGER K E, et al. A photoluminescence and Hall-effect study of GaSb grown by molecular-beam epitaxy[J]. Journal of Applied Physics, 1986, 59(8):2895-2900.
[18]
IYER S, SMALL L, HEGDE S M, et al. Low-temperature photoluminescence of Te-doped GaSb grown by liquid phase electroepitaxy[J]. Journal of Applied Physics, 1995, 77(11):5902-5909.
[19]
LUCKERT F, HAMILTON D I, YAKUSHEV M V, et al. Optical properties of high quality Cu2ZnSnSe4 thin films[J]. Applied Physics Letters, 2011, 99(6):062104.
[20]
GE Xiao-tian, WANG Deng-kui, GAO Xian, et al. Localized states emission in type-I GaAsSb/AlGaAs multiple quantum wells grown by molecular beam epitaxy[J]. Rapid Research Letters, 2017, 11(3):1770314.
[21]
FANG Xuan, WEI Zhi-peng, CHEN Rui, et al. Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires[J]. ACS Applied Materials & Interfaces, 2015, 7(19):10331-10336.
[22]
CARDONA M, THEWALT M L W. Isotope effects on the optical spectra of semiconductors[J]. Reviews of Modern Physics, 2005, 77(4):1173.
[23]
VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1):149-154.
[24]
XULiu-yang, GAO Xin, YUAN Xu-ze, et al. Nitrogen-plasma passivation of GaAs semiconductor surface[J]. Chinese Journal of Luminescence, 2016, 37(4):428-431. 许留洋, 高欣, 袁绪泽, 等. GaAs半导体表面的等离子氮钝化特性研究[J]. 发光学报, 2016, 37(4):428-431.
[25]
SIETHOFF H, AHLBOM K. The dependence of the Debye temperature on the elastic constants[J]. Physica Status Solidi, 1995, 190(1):179-191.