光子学报 ›› 2019, Vol. 48 ›› Issue (10): 1048001-1048001.doi: 10.3788/gzxb20194810.1048001

• “光孤子”专题 • 上一篇    下一篇

高斯势垒/阱作用下非局域矢量光孤子的传输特性

翁远航1, 王洪1,2, 陈佩君1   

  1. 1. 华南理工大学 电子与信息学院, 广州 510641;
    2. 华南理工大学 广东省光电工程技术研究开发中心, 物理与光电学院, 广州 510641
  • 收稿日期:2019-08-15 出版日期:2019-10-25 发布日期:2019-09-11
  • 通讯作者: 王洪(1964-),男,教授,博士,主要研究方向为非线性光学、光通信网络与器件、微纳光电材料与器件。Email:phhwang@scut.edu.cn E-mail:phhwang@scut.edu.cn
  • 作者简介:翁远航(1993-),男,博士研究生,主要研究方向为矢量空间光孤子及其相互作用.Email:phdwengyh@mail.scut.edu.cn
  • 基金资助:

    广东省科技计划项目(Nos.2015B010127013,2016B01012300,2017B010112003),广州市科技计划项目(Nos.201604046021,201704030139,201905010001),中山市科技发展专项资金项目(Nos.2017F2FC0002,2017A1009,2019AG014)

Propagation of Nonlocal Vector Solitons under Gauss Barrier or Trap

WENG Yuan-hang1, WANG Hong1,2, CHEN Pei-jun1   

  1. 1. School of Electronics and Information Engineering, South China University of Technology, Guangzhou 510641, China;
    2. Engineering Research Centre for Optoelectronics of Guangdong Province, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
  • Received:2019-08-15 Online:2019-10-25 Published:2019-09-11
  • Contact: 2019-09-11 E-mail:phhwang@scut.edu.cn
  • Supported by:

    Science and Technologies Plan Projects of Guangdong Province (Nos. 2015B010127013, 2016B01012300, 2017B010112003), Science and Technologies Projects of Guangzhou City (Nos. 201604046021, 201704030139, 201905010001), Science and Technology Development Special Fund Projects of Zhongshan City (Nos. 2017F2FC0002, 2017A1009, 2019AG014)

摘要:

非局域非线性介质中高斯势垒或势阱作用下矢量光孤子的传输特性,由具有高斯型线性势的耦合非局域非线性薛定谔方程描述,通过平方算子法对方程进行数值计算,并利用分步法仿真矢量光孤子的传输.在非局域非线性大块介质中,异相位矢量孤子的分量总是自发地分离,高斯势垒可以抑制分量间的排斥作用;同相位矢量孤子的分量则总是自发地融合,高斯势阱可以抑制分量间的吸引作用.通过定量分析势垒高度(或势阱深度)或宽度与矢量孤子两个分量在归一化传输距离为500处的间距之间的关系,发现如果势垒(或势阱)的高度(或深度)及宽度太大或太小,高斯线性势都不能抑制这一过程,甚至会恶化矢量光孤子的传输.对于异相位孤子,最有效抑制分量分离过程的高斯势垒设置是高度为1.10,宽度为1.00;对于同相位孤子,最有效抑制分量融合过程的高斯势阱应设置是深度为-1.50,宽度为1.00.研究结果可为全光开关、光逻辑门、光计算等光控光技术提供参考.

关键词: 线性势, 孤子, 非线性偏微分方程, 数值仿真, 非局域非线性, 非线性光学, 传输控制

Abstract:

The propagation of vector solitons in nonlocal nonlinear media with a Gauss barrier or a Gauss trap is described by the coupled nonlocal nonlinear Schrodinger equations with Gauss-type linear potential. These equations are numerically calculated by the square operator method, and the propagation of vector solitons is simulated by the step-step method. In nonlocal nonlinear bulk media, the components of out-of-phase vector solitons are always separated spontaneously, and the repulsion between them can be suppressed by a Gauss barrier. The components of in-phase vector solitons are always fused spontaneously, and the attraction between them can be suppressed by a Gauss trap. By quantitatively analyzing the relationship between the barrier heigh/depth or width and the distance between two components of vector solitons at the normalized transmission distance of 500, it is found that if the heigh/depth and width of barrier/trap are too large or too small, Gauss linear potential can not suppress this process, or even worsen it. For out-of-phase solitons, the Gauss barrier that can effectively suppress the separation should be set to 1.10 in height and 1.00 in width. For in-phase solitons, the Gauss potential well that can effectively suppress the fusion should be set to -1.50 in depth and 1.00 in width. Results in this paper may benefit the future researches about all-optical switch, optical logic-gate, optical computing and other optical control technologies.

Key words: Linear potential, Solitons, Control of propagation path, Numerical simulation, Nonlinear differential equation, Nonlinear optics, Nonlocal nonlinearity

中图分类号: